
ssts

Stefano Lusardi

Mar 15, 2023





QUICK START

1 Licensing 3

Index 9

i



ii



ssts

Small & Simple Task Scheduler for C++17

ssTs is a time-based Task Scheduler, written in modern C++.

Header only, with no external dependencies.

ssTs features:

• a ready to use, general purpose Thread Pool implementation.

• a Task Scheduler APIs to run workloads at given time points.

ssTs requires a C++17 compiler. Currently the project is built and tested on the following platforms:

• Windows, MSVC >= 2017, Clang >= 9.0

• Linux, GCC >= 7.5, Clang >= 8.0

• MacOS, GCC >= 8.4, Clang >= 10.0

QUICK START 1



ssts

2 QUICK START



CHAPTER

ONE

LICENSING

This software is licensed under the MIT license. See the LICENSE file for details.

1.1 Getting Started

The fastest way to get started with ssTs library is to include the three header files directly in your project.

1.2 Basic Usage

1.3 Install

1.4 Examples

1.5 Tests

1.6 task

Defined in ssts/task.hpp

class task
Move-only callable object.

This class represents a callable object. Can be initialized with any invocable type that supports operator(). In-
ternally the class implements a type-erasure idiom to accept any callable signature without exposing it to the
outside.

3

https://github.com/StefanoLusardi/task_scheduler/blob/master/LICENSE


ssts

Public Functions

template<typename FunctionType>
inline explicit task(FunctionType &&f)

Default constructor.

Creates a task instance with the given callable object. The callable object can be e.g. a lambda function, a
functor, a free function or a class method bound to an object.

Parameters
f – Callable parameterless object wrapped within this task instance.

inline task(task &&other) noexcept
Move constructor.

Move constructs a task instance to this.

Parameters
other – task object.

inline void operator()()
operator().

Invokes a task.

inline void invoke()
invoke().

Invokes a task. Explicit overload of operator().

1.7 task_pool

class task_pool
Task Pool that can run any callable object.

This class is general purpose thread pool that can launch task asyncronously. It is possible to get an asyncronous
result of a task execution.

Public Functions

inline explicit task_pool(const unsigned int num_threads = std::thread::hardware_concurrency())
Constructor.

Creates a ssts::task_pool instance with the given number of threads.

Parameters
num_threads – Number of threads that will be used in the underlying ssts::task_pool.

4 Chapter 1. Licensing



ssts

inline ~task_pool()
Destructor.

Destructs this after all joinable threads are terminated.

inline void stop()
Stop all threads.

Stop thread pool and join all joinable threads.

template<typename FunctionType>
inline auto run(FunctionType &&f, const std::optional<size_t> &task_hash = std::nullopt)

Run a callable object asynchronously.

Enqueue a new task with the given callable object. The enqueued task will run as soon as a thread is
available. Returns the result of the asynchronous computation.

Template Parameters
FunctionType – Types of the callable object.

Parameters
f – Callable object.

Returns
std::future task result

1.8 task_scheduler

class task_scheduler
Task Scheduler that can launch tasks on based several time-based policies.

This class is used to manage a queue of tasks using a fixed number of threads. The actual task execution is
delgated to an internal ssts::task_pool object.

Public Functions

inline explicit task_scheduler(const unsigned int num_threads = std::thread::hardware_concurrency())
Constructor.

Creates a ssts::task_scheduler instance. The number of threads to be used by the ssts::task_pool defaults
to the number of threads supported by the platform.

Parameters
num_threads – Number of threads that will be used in the underlying ssts::task_pool.

inline ~task_scheduler()
Destructor.

Destructs this. If the task_scheduler is running its tasks are stopped first.

1.8. task_scheduler 5



ssts

inline void start()
Start running tasks.

This function starts the task_scheduler worker thread. The function is guaranteed to return after the sched-
uler thread is started.

inline size_t size()
Get the number of scheduled tasks.

This function return the number of tasks that are currently scheduled for execution (both enabled and dis-
abled).

Returns
Number of tasks to be run.

inline void stop()
Stop all running tasks.

This function stops the task_scheduler execution and stops all the running tasks.

inline bool is_duplicate_allowed() const
Check if duplicated tasks are allowed.

Duplicated tasks are created with the same task_id. If a task has been started without a task_id it is not
possible to check if it has duplicates. In case duplicates are not allowed task insertion will be silently
rejected for same task_id.

Returns
bool indicating if duplicated tasks are allowed.

inline void set_duplicate_allowed(bool is_allowed)
Enable or disable duplicated tasks.

Duplicated tasks are created with the same task_id. If a task has been started without a task_id it is not
possible to check if it has duplicates. In case duplicates are not allowed task insertion will be silently
rejected for same task_id.

inline bool is_scheduled(const std::string &task_id)
Check if a task is scheduled.

If a task has been started without a task_id it is not possible to query its status. In case a task_id is not
found this function return false. If a task is no longer scheduled it must be added using one of the following
APIs: ssts::task_scheduler::in, ssts::task_scheduler::at, ssts::task_scheduler::every.

Parameters
task_id – task_id to check.

Returns
bool indicating if the task is currently scheduled.

inline bool is_enabled(const std::string &task_id)
Check if a task is enabled.

6 Chapter 1. Licensing



ssts

If a task has been started without a task_id it is not possible to query its status. In case a task_id is not found
this function return false. By default new tasks are enabled. A task can be enabled or disabled by calling
ssts::task_scheduler::set_enabled.

Parameters
task_id – task_id to check.

Returns
bool indicating if the task is currently enabled.

inline bool set_enabled(const std::string &task_id, bool is_enabled)
Enable or disable task.

If a task has been started without a task_id it is not possible to update its status. In case a task_id is
not found this function return false. It is possible to check if a task is enabled or disabled by calling
ssts::task_scheduler::is_enabled.

Parameters

• task_id – task_id to enable or disable.

• is_enabled – true enables, false disables the given task_id.

Returns
bool indicating if the task is currently enabled.

inline bool remove_task(const std::string &task_id)
Remove a task.

If a task has been started without a task_id it is not possible to remove it. In case a task_id
is not found this function return false. It is possible to check if a task is scheduled by calling
ssts::task_scheduler::is_scheduled.

Parameters
task_id – task_id to remove.

Returns
bool indicating if the task has been properly removed.

inline bool update_interval(const std::string &task_id, ssts::clock::duration interval)
Update a task interval.

If a task is not recursive (i.e. has not been started with every() APIs) or the task has not been assigned a
task_id, it is not possible to update it. In case of any failure (task_id not found or task non recursive) this
function return false.

Parameters

• task_id – task_id to update.

• interval – new task interval to set.

Returns
bool indicating if the task has been properly updated.

1.8. task_scheduler 7



ssts

8 Chapter 1. Licensing



INDEX

S
ssts::task (C++ class), 3
ssts::task::invoke (C++ function), 4
ssts::task::operator() (C++ function), 4
ssts::task::task (C++ function), 4
ssts::task_pool (C++ class), 4
ssts::task_pool::~task_pool (C++ function), 4
ssts::task_pool::run (C++ function), 5
ssts::task_pool::stop (C++ function), 5
ssts::task_pool::task_pool (C++ function), 4
ssts::task_scheduler (C++ class), 5
ssts::task_scheduler::~task_scheduler (C++

function), 5
ssts::task_scheduler::is_duplicate_allowed

(C++ function), 6
ssts::task_scheduler::is_enabled (C++ func-

tion), 6
ssts::task_scheduler::is_scheduled (C++ func-

tion), 6
ssts::task_scheduler::remove_task (C++ func-

tion), 7
ssts::task_scheduler::set_duplicate_allowed

(C++ function), 6
ssts::task_scheduler::set_enabled (C++ func-

tion), 7
ssts::task_scheduler::size (C++ function), 6
ssts::task_scheduler::start (C++ function), 5
ssts::task_scheduler::stop (C++ function), 6
ssts::task_scheduler::task_scheduler (C++

function), 5
ssts::task_scheduler::update_interval (C++

function), 7

9


	Licensing
	Getting Started
	Basic Usage
	Install
	Examples
	Tests
	task
	task_pool
	task_scheduler

	Index

